TCEQ Interoffice Memorandum **To:** Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth From: Neeraja Erraguntla, Ph.D., D.A.B.T. Toxicology Division, Office of the Executive Director **Date:** June 2, 2014 **Subject:** Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected Downwind of XTO Energy Inc- West Lake Comp Station, (Latitude 32.9488888, Longitude -97.5261111) near Azle, Tarrant County, **Texas** Sample Collected on February 27, 2014, Request Number 1403005 (Lab Sample 1403005-001) ## **Key Points** • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. ## **Background** On February27, 2014, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1403005-001) downwind of XTO Energy Inc- West Lake Comp Station near Azle, Tarrant County, Texas (Latitude 32.9488888, Longitude -97.5261111). The regional investigator informed that the sample was collected as part of a scheduled investigation. The investigator did not experience any odors or health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 42.4°F with a relative humidity of 39.7%, and winds were from the southeast (140°) at 5.6 miles per hour. The sampling site was within 301 -500 feet from the possible emission source. The nearest location where the public could have access was greater than 501 feet from the possible emission source (Compressor). The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in this review are provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppbv) (Attachment B and Table 1). Please note that the available canister technology and analysis method cannot capture and/or analyze for all chemicals. Tony Walker et al. June 2, 2014 Page 2 of 14 #### **Results and Evaluation** Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors. Please call me at (512) 239-2492 if you have any questions regarding this evaluation. Tony Walker et al. June 2, 2014 Page 3 of 14 #### Attachment A ### **List of Target Analytes for Canister Samples** ethane ethylene acetylene propane propylene dichlorodifluoromethane methyl chloride isobutane vinyl chloride 1-butene 1.3-butadiene n-butane t-2-butene bromomethane c-2-butene 3-methyl-1-butene isopentane trichlorofluoromethane 1-pentene n-pentane isoprene t-2-pentene 1,1-dichloroethylene c-2-pentene methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene 1.1-dichloroethane cyclopentane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2-methyl-1-pentene + 1-hexene n-hexane chloroform t-2-hexene c-2-hexene 1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane benzene carbon tetrachloride cyclohexane 2-methylhexane 2,3-dimethylpentane 3-methylhexane 1,2-dichloropropane trichloroethylene 2,2,4-trimethylpentane 2-chloropentane n-heptane c-1,3-dichloropropylene methylcyclohexane t-1,3-dichloropropylene 1.1.2-trichloroethane 2,3,4-trimethylpentane toluene 2-methylheptane 3-methylheptane 1.2-dibromoethane n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene 1,1,2,2-tetrachloroethane o-xylene n-nonane isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene 1,3,5-trimethylbenzene o-ethyltoluene 1,2,4-trimethylbenzene n-decane 1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. June 2, 2014 Page 4 of 14 #### **Attachment B** 3/11/2014 #### **Texas Commission on Environmental Quality** Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716 #### Laboratory Analysis Results Request Number: 1403005 Request Lead: Region: T04 Date Received: 3/5/2014 Project(s): Barnett Shale | Facility(ies) Sampled | City | County | Facility Type | |------------------------------------|------|---------|---------------| | XTO - West Lake Compressor Station | Azle | Tarrant | | Sample(s) Received Field ID Number: N3884-022714 Laboratory Sample Number: 1403005-001 Sampled by: John Malik Sampling Site: Date & Time Sampled: 02/27/14 10:47:00 Valid Sample: Yes Comments: Canister N3884 was used to collect a 30-minute downwind sample using OFC-037. Requested Laboratory Procedure(s): Analysis: AP001VOC Determination of VOC Canisters by GC/MS Using Modified Method TO-15 Please note that this analytical technique is not capable of measuring all compounds which might have adverse health effects. For questions on the analytical procedures please contact the laboratory manager at (512) 239-1716. For an update on the health effects evaluation of these data, please contact the Toxicology Division at (512) 239-1795. Analyst P. Loh Date: 3/12/14 Laboratory Manager: en Lancaster Date: 3/20/14 ### Laboratory Analysis Results Request Number: 1403005 Analysis Code: AP001VOC | Note: Results are reported in units | s of ppbv | | | | | | | | | • | |-------------------------------------|--------------|--------------|-----|----------|---------|--------------|---------------------------------------|--------------|----------|---------------------------------------| | Lab ID | | 1403005-001 | | | | | | | | | | Field ID | | N3884-022714 | | | | | | | | | | Canister ID | | N3884 | | | | | | | | | | | | | | Analysis | | | | | Analysis | | | Compound | Conc. | SDL | SQL | Date | Flags** | Conc, | SDL | SQL | Date | Flags** | | ethane | 20 | 1.0 | 2.4 | 3/7/2014 | T,D1 | | | | | | | ethylene | ND | 1.0 | 2.4 | 3/7/2014 | T,DI | | | | | | | acetylene | 0.32 | 1,0 | 2,4 | 3/7/2014 | J,T,D1 | | | | | | | propane | 8.4 | 1.0 | 2.4 | 3/7/2014 | T,D1 | | | | | | | propylene | ND : | 1.0 | 2.4 | 3/7/2014 | T,D1 | | | | | | | dichlorodifluoromethane | 0.55 | 0.40 | 1.2 | 3/7/2014 | L,D1 | | l | | | | | methyl chloride | 0.56 | 0.40 | 1.2 | 3/7/2014 | L,D1 | | | | | | | isobutane | 1.3 | 0.46 | 2.4 | 3/7/2014 | L,D1 | | | | | | | vinyl chloride | ND | 0.34 | 1.2 | 3/7/2014 | DI | | | | | | | 1-butene | ND | 0.40 | 1.2 | 3/7/2014 | DI | | | | | | | 1,3-butadiene | ND | 0.54 | 1.2 | 3/7/2014 | D1 | | | | | | | n-butane | 2.9 | 0.40 | 2.4 | 3/7/2014 | Dl | | Ì | | | | | t-2-butene | , MD | 0.36 | 1.2 | 3/7/2014 | DI | 1 | | | i i | | | bromomethane | ND | 0.54 | 1.2 | 3/7/2014 | D1 | | | | | | | c-2-butene | ND | 0.54 | 1.2 | 3/7/2014 | D1 | | | | Ì | | | 3-methyl-1-butene | ND | 0.46 | 1.2 | 3/7/2014 | D1 | | | | Ì | | | isopentane | 0.55 | 0.54 | 4.8 | 3/7/2014 | L,D1 | <u> </u> | | 1 | i i | | | trichlorofluoromethane | 0.26 | 0.58 | 1.2 | 3/7/2014 | J,D1 | İ | | | | | | 1-pentene | ND | 0.54 | 1.2 | 3/7/2014 | D1 | | | | | | | n-pentane | 0.40 | 0.54 | 4.8 | 3/7/2014 | J,D1 | · | | <u> </u> | | | | isoprene | ND | 0.54 | 1.2 | 3/7/2014 | DI | | | | | | | t-2-pentene | ND | 0.54 | 2.4 | 3/7/2014 | DI | | | - | | | | 1,1-dichloroethylene | ND | 0.36 | 1.2 | 3/7/2014 | DI | | | | | | | c-2-pentene | ND | 0.50 | 2,4 | 3/7/2014 | DI | -\ | | | | | | methylene chloride | 0.07 | 0.28 | 1.2 | 3/7/2014 | J,D1 | <u> </u> | | 1 | | | | 2-methyl-2-butene | ND | 0.46 | 1.2 | 3/7/2014 | DI | | | - | | | | 2,2-dimethylbutane | ND | 0.42 | 1.2 | 3/7/2014 | DI | 1 | | | | | | cyclopentene | ND | 0.40 | 1.2 | 3/7/2014 | DI | | | | i | | | 4-methyl-1-pentene | ND | 0.44 | 2.4 | 3/7/2014 | DI | | | | i | | | 1,1-dichloroethane | ND | 0.38 | 1.2 | 3/7/2014 | DI | - | | | | | | cyclopentane | ND | 0.54 | 1.2 | 3/7/2014 | DI | <u> </u> | | 1 | | | | 2,3-dimethylbutane | ND | 0.56 | 2.4 | 3/7/2014 | DI | - | | | | | | 2-methylpentane | ND | 0.54 | 1,2 | 3/7/2014 | Dl | | | | | | | 3-methylpentane | 0.07 | 0.46 | 1.2 | 3/7/2014 | J,D1 | 1 | | - | | | | 2-methyl-1-pentene + 1-hexene | ND | 0.40 | 4.8 | 3/7/2014 | D1 | | | | - 1 | | | n-hexane | 0.13 | 0.40 | 2.4 | 3/7/2014 | J,D1 | - | | | | | | chloroform | 0.13 | 0.40 | 1.2 | 3/7/2014 | J,D1 | + | | <u> </u> | | | | 1-2-hexene | ND | 0.42 | 2.4 | 3/7/2014 | D1 | <u> </u> | | | | | | -2-nexene
c-2-hexene | ND | 0.54 | 2.4 | 3/7/2014 | D1 | 1 | | <u> </u> | | | | 1,2-dichloroethane | ND | 0.54 | 1.2 | 3/7/2014 | D1 | | | <u> </u> | | | | | 0.04 | 0.54 | 2,4 | 3/7/2014 | J,D1 | | L | | | | | methylcyclopentane | 1 . | | | | D1 | _ | | ļ <u> </u> | | · · · · · · · · · · · · · · · · · · · | | 2,4-dimethylpentane | ND | 0.54 | 2.4 | 3/7/2014 | | 1 | | | | | | 1,1,1-trichloroethane | ND
L 0.22 | 0.52 | 1.2 | 3/7/2014 | D1 | | · · · · · · · · · · · · · · · · · · · | ļ | | | | benzene | 0.22 | 0.54 | 1,2 | 3/7/2014 | J,DI | 1 | | | | | | carbon tetrachloride | 0.10 | 0.54 | 1.2 | 3/7/2014 | J,D1 | 4 | | ļ | | | | cyclohexane | ND ND | 0.48 | 1.2 | 3/7/2014 | D1 | 1 | | | | | | 2-methylhexane | ND | 0.54 | 1.2 | 3/7/2014 | D1 | | | | | | | 2,3-dimethylpentane | ND | 0.52 | 1.2 | 3/7/2014 | D1 | 1 | | | | | n-undecane ### Laboratory Analysis Results Request Number: 1403005 Analysis Code: AP001VOC Note: Results are reported in units of ppbv Lab ID 1403005-001 Analysis Analysis Date Flags** Compound SQL Conc. SDL Date Conc. SDL SQL Flags** 3-methylhexane ND 0.40 1.2 3/7/2014 D1 1,2-dichloropropane ND 0.34 1.2 3/7/2014 DI trichloroethylene ND 0.58 1.2 3/7/2014 DI 3/7/2014 2,2,4-trimethylpentane ND 0.48 1.2 DI 2-chloropentane ND 0.54 1,2 3/7/2014 DI n-heptane 0.04 0.50 2.4 3/7/2014 J,D1 c-1,3-dichloropropylene ND 0.40 1.2 3/7/2014 DI methylcyclohexane 0.04 0.52 3/7/2014 J,D1 2,4 t-1,3-dichloropropylene 0.40 3/7/2014 ND 1,2 D1 1,1,2-trichloroethane ND 0.42 3/7/2014 D1 1.2 2,3,4-trimethylpentane 3/7/2014 ND 0.48 D1 2.4 toluene 0.17 0.54 1.2 3/7/2014 J,D1 2-methylheptane 0.40 2.4 3/7/2014 DI ND 3-methylheptane ND 0.46 2.4 3/7/2014 D1 1,2-dibromoethane ND 0.40 3/7/2014 D1 1.2 n-octane ND 0.38 2.4 3/7/2014 DI tetrachloroethylene ND 0,48 1.2 3/7/2014 D1 chlorobenzene ND 0.54 1.2 3/7/2014 D1 ethylbenzene ND 0.54 2.4 3/7/2014 DI m & p-xylene 0.05 0.54 4.8 3/7/2014 J,DI styrene ND 0.54 2,4 3/7/2014 D1 1,1,2,2-tetrachloroethane ND 3/7/2014 DI 0.40 1.2 o-xylene ND 0.54 2.4 3/7/2014 D1 n-nonane ND 0.44 1.2 3/7/2014 DI isopropylbenzene ND 0.48 1.2 3/7/2014 DI ND 0.54 1.2 3/7/2014 DI n-propylbenzene 3/7/2014 m-ethyltoluene ND 0.22 1.2 DI p-ethyltoluene 0.32 3/7/2014 DI ND 2.4 1,3,5-trimethylbenzene ND 0.50 2.4 3/7/2014 DI o-ethyltoluene ND 0.26 2.4 3/7/2014 D1 1,2,4-trimethylbenzene ND 0.54 1.2 3/7/2014 DI n-decane ND 0.54 3/7/2014 D1 2.4 1,2,3-trimethylbenzene ND 0.54 1.2 3/7/2014 D1 m-diethylbenzene 3/7/2014 DI ND 0.54 2.4 DI p-diethylbenzene ND 0.54 1.2 3/7/2014 3/7/2014 D1 0.54 ND ## **Laboratory Analysis Results** Request Number: 1403005 Analysis Code: AP001VOC #### Qualifier Notes: ND - not detected NQ - concentration can not be quantified due to possible interferences or coelutions. SDL - Sample Detection Limit (Limit of Detection adjusted for dilutions). SQL - Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). INV - Invalid. $\begin{array}{l} J - Reported \ concentration \ is \ below \ SDL. \\ L - Reported \ concentration \ is \ at \ or \ above \ the \ SDL \ and \ is \ below \ the \ lower \ limit \ of \ quantitation. \end{array}$ B - Reported concentration exceeds the upper limit of instrument calibration. M - Result modified from previous result. T- Data was not confirmed by a confirmational analysis. Compound and/or results is tentatively identified. F - Established acceptance criteria was not met due to factors outside the laboratory's control. H - Not all associated hold time specifications were net. Data may be biased. C - Sample received with a missing or broken custody seal. R - Sample received with a missing or incomplete chain of custody I - Sample received without a legible unique identifier. G - Sample received in an improper container. U - Sample received with insufficient sample volume. W - Sample received with insufficient preservation. Quality control notes for AP001VOC samples D1-Sample concentration was calculated using a dilution factor of 4. TCEQ laboratory customer support may be reached at Ken.Lancaster@tceq.texas.gov The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans With Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512) 239-0010, (Fax 512-239 -0055), or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, Texas 78711-3087. Tony Walker et al. June 2, 2014 Page 8 of 14 Table 1. Comparison of Monitored Concentrations in Lab Sample 1403005-001 to TCEQ Short-Term AMCVs | Lab Sample ID | 1403005-001 | | | | | | |-----------------------------------|----------------------------------|---|----------------------------|---------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations
(ppb _v) | Flags | SDL
(ppb _v) | | 1,1,1-Trichloroethane | 380,000 | 1,700 | 1.2 | ND | D1 | 0.52 | | 1,1,2,2-Tetrachloroethane | 7,300 | 10 | 1.2 | ND | D1 | 0.4 | | 1,1,2-Trichloroethane | Not Available | 100 | 1.2 | ND | D1 | 0.42 | | 1,1-Dichloroethane | Not Available | 1,000 | 1.2 | ND | D1 | 0.38 | | 1,1-Dichloroethylene | Not Available | 180 | 1.2 | ND | D1 | 0.36 | | 1,2,3-Trimethylbenzene | Not Available | 250 | 1.2 | ND | D1 | 0.54 | | 1,2,4-Trimethylbenzene | 140 | 250 | 1.2 | ND | D1 | 0.54 | | 1,2-Dibromoethane | Not Available | 0.5 | 1.2 | ND | D1 | 0.4 | | 1,2-Dichloroethane | 6,000 | 40 | 1.2 | ND | D1 | 0.54 | | 1,2-Dichloropropane | 250 | 100 | 1.2 | ND | D1 | 0.34 | | 1,3,5-Trimethylbenzene | Not Available | 250 | 2.4 | ND | D1 | 0.5 | | 1,3-Butadiene | 230 | 1,700 | 1.2 | ND | D1 | 0.54 | | 1-Butene | 360 | 27,000 | 1.2 | ND | D1 | 0.4 | | 1-Pentene | 100 | 2,600 | 1.2 | ND | D1 | 0.54 | | 2,2,4-Trimethylpentane | 670 | 750 | 1.2 | ND | D1 | 0.48 | | 2,2-Dimethylbutane (Neohexane) | Not Available | 1,000 | 1.2 | ND | D1 | 0.42 | | 2,3,4-Trimethylpentane | Not Available | 750 | 2.4 | ND | D1 | 0.48 | | 2,3-Dimethylbutane | 420 | 990 | 2.4 | ND | D1 | 0.56 | | 2,3-Dimethylpentane | 4,500 | 850 | 1.2 | ND | D1 | 0.52 | | 2,4-Dimethylpentane | 940 | 850 | 2.4 | ND | D1 | 0.54 | | 2-Chloropentane (as chloroethane) | Not Available | 240 | 1.2 | ND | D1 | 0.54 | | 2-Methyl-1-Pentene +1-Hexene | 140 | 500 | 4.8 | ND | D1 | 0.4 | | 2-Methyl-2-Butene | Not Available | 2,600 | 1.2 | ND | D1 | 0.46 | | 2-Methylheptane | 110 | 750 | 2.4 | ND | D1 | 0.4 | | Lab Sample ID | 1403005-001 | | | | | | |---------------------------------|----------------------------------|--|----------------------------|---------------------------------------|--------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations
(ppb _v) | Flags | SDL
(ppb _v) | | 2-Methylhexane | 420 | 750 | 1.2 | ND | D1 | 0.54 | | 2-Methylpentane (Isohexane) | 7,000 | 850 | 1.2 | ND | D1 | 0.54 | | 3-Methyl-1-Butene | 250 | 8,000 | 1.2 | ND | D1 | 0.46 | | 3-Methylheptane | 1,500 | 750 | 2.4 | ND | D1 | 0.46 | | 3-Methylhexane | 840 | 750 | 1.2 | ND | D1 | 0.4 | | 3-Methylpentane | 8,900 | 1,000 | 1.2 | 0.07 | J,D1 | 0.46 | | 4-Methyl-1-Pentene (as hexene) | 140 | 500 | 2.4 | ND | D1 | 0.44 | | Acetylene | Not Available | 25,000 | 2.4 | 0.32 | J,T,D1 | 1 | | Benzene | 2,700 | 180 | 1.2 | 0.22 | J,D1 | 0.54 | | Bromomethane (methyl bromide) | Not Available | 30 | 1.2 | ND | D1 | 0.54 | | c-1,3-Dichloropropylene | Not Available | 10 | 1.2 | ND | D1 | 0.4 | | c-2-Butene | 2,100 | 15,000 | 1.2 | ND | D1 | 0.54 | | c-2-Hexene | 140 | 500 | 2.4 | ND | D1 | 0.54 | | c-2-Pentene | Not Available | 2,600 | 2.4 | ND | D1 | 0.5 | | Carbon Tetrachloride | 4,600 | 20 | 1.2 | 0.1 | J,D1 | 0.54 | | Chlorobenzene (phenyl chloride) | 1,300 | 100 | 1.2 | ND | D1 | 0.54 | | Chloroform (trichloromethane) | 3,800 | 20 | 1.2 | 0.02 | J,D1 | 0.42 | | Cyclohexane | 2,500 | 1,000 | 1.2 | ND | D1 | 0.48 | | Cyclopentane | Not Available | 1,200 | 1.2 | ND | D1 | 0.54 | | Cyclopentene | Not Available | 2,900 | 1.2 | ND | D1 | 0.4 | | Dichlorodifluoromethane | Not Available | 10,000 | 1.2 | 0.55 | L,D1 | 0.4 | | Ethane | Not Available | Simple Asphyxiant* | 2.4 | 20 | T,D1 | 1 | | Ethylbenzene | 170 | 20,000 | 2.4 | ND | D1 | 0.54 | | Ethylene | 270,000 | 500,000 | 2.4 | ND | T,D1 | 1 | | Isobutane | Not Available | 33,000 | 2.4 | 1.3 | L,D1 | 0.46 | | Isopentane (2-methylbutane) | 1,300 | 68,000 | 4.8 | 0.55 | L,D1 | 0.54 | | Lab Sample ID | 1403005-001 | | | | | | |--------------------------------------|-------------------------------|--|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV (ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | Isoprene | 48 | 20 | 1.2 | ND | D1 | 0.54 | | Isopropylbenzene (cumene) | 48 | 500 | 1.2 | ND | D1 | 0.48 | | m & p-Xylene (as mixed isomers) | 80 | 1,700 | 4.8 | 0.05 | J,D1 | 0.54 | | m-Diethylbenzene | 70 | 460 | 2.4 | ND | D1 | 0.54 | | Methyl Chloride (chloromethane) | Not Available | 500 | 1.2 | 0.56 | L,D1 | 0.4 | | Methylcyclohexane | 150 | 4,000 | 2.4 | 0.04 | J,D1 | 0.52 | | Methylcyclopentane | 1,700 | 750 | 2.4 | 0.04 | J,D1 | 0.54 | | Methylene Chloride (dichloromethane) | 160,000 | 3,500 | 1.2 | 0.07 | J,D1 | 0.28 | | m-Ethyltoluene | 18 | 250 | 1.2 | ND | D1 | 0.22 | | n-Butane | 1,200,000 | 92,000 | 2.4 | 2.9 | D1 | 0.4 | | n-Decane | 620 | 1,750 | 2.4 | ND | D1 | 0.54 | | n-Heptane | 670 | 850 | 2.4 | 0.04 | J,D1 | 0.5 | | n-Hexane | 1,500 | 1,800 | 2.4 | 0.13 | J,D1 | 0.4 | | n-Nonane | Not Available | 2,000 | 1.2 | ND | D1 | 0.44 | | n-Octane | 1,700 | 750 | 2.4 | ND | D1 | 0.38 | | n-Pentane | 1,400 | 68,000 | 4.8 | 0.4 | J,D1 | 0.54 | | n-Propylbenzene | 48 | 500 | 1.2 | ND | D1 | 0.54 | | n-Undecane | 870 | 550 | 2.4 | ND | D1 | 0.54 | | o-Ethyltoluene | 74 | 250 | 2.4 | ND | D1 | 0.26 | | o-Xylene | 380 | 1,700 | 2.4 | ND | D1 | 0.54 | | p-Diethylbenzene | 70 | 460 | 1.2 | ND | D1 | 0.54 | | p-Ethyltoluene | 8.1 | 250 | 2.4 | ND | D1 | 0.32 | | Propane | 1,500,000 | Simple Asphyxiant* | 2.4 | 8.4 | T,D1 | 1 | | Propylene | 13,000 | Simple Asphyxiant* | 2.4 | ND | T,D1 | 1 | | Styrene | 25 | 5,100 | 2.4 | ND | D1 | 0.54 | | t-1,3-Dichloropropylene | Not Available | 10 | 1.2 | ND | D1 | 0.4 | Tony Walker et al. June 2, 2014 Page 11 of 14 | Lab Sample ID | 1403005-001 | | | | | | |------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | t-2-Butene | 2,100 | 15,000 | 1.2 | ND | D1 | 0.36 | | t-2-Hexene | 140 | 500 | 2.4 | ND | D1 | 0.54 | | t-2-Pentene | Not Available | 2,600 | 2.4 | ND | D1 | 0.54 | | Tetrachloroethylene | 770 | 1,000 | 1.2 | ND | D1 | 0.48 | | Toluene | 920 | 4,000 | 1.2 | 0.17 | J,D1 | 0.54 | | Trichloroethylene | 3,900 | 100 | 1.2 | ND | D1 | 0.58 | | Trichlorofluoromethane | 5,000 | 10,000 | 1.2 | 0.26 | J,D1 | 0.58 | | Vinyl Chloride | Not Available | 26,000 | 1.2 | ND | D1 | 0.34 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume. ND - Not detected. NQ - Concentration can not be quantified due to possible interferences or coelutions. SDL - Sample Detection Limit (Limit of Detection adjusted for dilution). SQL – Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). INV - Invalid. - J Reported concentration is below SDL. - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. - M Result modified from previous result. - T Data was not confirmed by a confirmational analysis. Data is tentatively identified. - F Established acceptance criteria were not met due to factors outside the laboratory's control. - H Not all associated hold time specifications were met. Data may be biased. - C Sample received with a missing or broken custody seal. - R Sample received with a missing or incomplete chain of custody. - I Sample received without a legible unique identifier. - G Sample received in an improper container. - U Sample received with insufficient sample volume. Tony Walker et al. June 2, 2014 Page 12 of 14 W - Sample received with insufficient preservation. D1 - Sample concentration was calculated using a dilution factor of 4. Tony Walker et al. June 2, 2014 Page 13 of 14 **Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs)** Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV. | Compound | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |-----------------------------------|---|--------------------------------------|--| | 1,1,1-Trichloroethane | 940 | Cyclopentane | 120 | | 1,1,2,2-Tetrachloroethane | 1 | Cyclopentene | 290 | | 1,1,2-Trichloroethane | 10 | Dichlorodifluoromethane | 1,000 | | 1,1-Dichloroethane | 100 | Ethane | Simple Asphyxiant* | | 1,1-Dichloroethylene | 86 | Ethylbenzene | 450 | | 1,2,3-Trimethylbenzene | 25 | Ethylene** | 5,300 | | 1,2,4-Trimethylbenzene | 25 | Isobutane | 2,400 | | 1,2-Dibromoethane | 0.05 | Isopentane (2-methylbutane) | 8,000 | | 1,2-Dichloroethane | 1 | Isoprene | 2 | | 1,2-Dichloropropane | 10 | Isopropylbenzene (cumene) | 50 | | 1,3,5-Trimethylbenzene | 25 | m & p-Xylene (as mixed isomers) | 140 | | 1,3-Butadiene | 9.1 | m-Diethylbenzene | 46 | | 1-Butene | 2,300 | Methyl Chloride (chloromethane) | 50 | | 1-Pentene | Not Available | Methylcyclohexane | 400 | | 2,2,4-Trimethylpentane | 75 | Methylcyclopentane | 75 | | 2,2-Dimethylbutane (Neohexane) | 100 | Methylene Chloride (dichloromethane) | 100 | | 2,3,4-Trimethylpentane | 75 | m-Ethyltoluene | 25 | | 2,3-Dimethylbutane | 99 | n-Butane | 2,400 | | 2,3-Dimethylpentane | 85 | n-Decane | 175 | | 2,4-Dimethylpentane | 85 | n-Heptane | 85 | | 2-Chloropentane (as chloroethane) | 24 | n-Hexane | 190 | | 2-Methyl-1-Pentene +1-Hexene | 50 | n-Nonane | 200 | | Compound | Long-Term Health
AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |---------------------------------|--|-------------------------|--| | 2-Methyl-2-Butene | Not Available | n-Octane | 75 | | 2-Methylheptane | 75 | n-Pentane | 8,000 | | 2-Methylhexane | 75 | n-Propylbenzene | 50 | | 2-Methylpentane (Isohexane) | 85 | n-Undecane | 55 | | 3-Methyl-1-Butene | 800 | o-Ethyltoluene | 25 | | 3-Methylheptane | 75 | o-Xylene | 140 | | 3-Methylhexane | 75 | p-Diethylbenzene | 46 | | 3-Methylpentane | 100 | p-Ethyltoluene | 25 | | 4-Methyl-1-Pentene (as hexene) | 50 | Propane | Simple Asphyxiant* | | Acetylene | 2,500 | Propylene | Simple Asphyxiant* | | Benzene | 1.4 | Styrene | 110 | | Bromomethane (methyl bromide) | 3 | t-1,3-Dichloropropylene | 1 | | c-1,3-Dichloropropylene | 1 | t-2-Butene | 690 | | c-2-Butene | 690 | t-2-Hexene | 50 | | c-2-Hexene | 50 | t-2-Pentene | Not Available | | c-2-Pentene | Not Available | Tetrachloroethylene*** | 3.8 | | Carbon Tetrachloride | 2 | Toluene | 1,100 | | Chlorobenzene (phenyl chloride) | 10 | Trichloroethylene | 10 | | Chloroform (trichloromethane) | 2 | Trichlorofluoromethane | 1,000 | | Cyclohexane | 100 | Vinyl Chloride | 0.45 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ^{**}Long-term vegetation AMCV for Ethylene is 30 ppb. ^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.